
3. (a) The force on the electron is
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Thus, the magnitude of FB  is 6.2 × 10
14

 N, and FB  points in the positive z direction. 

(b) This amounts to repeating the above computation with a change in the sign in the

charge. Thus, FB  has the same magnitude but points in the negative z direction, namely,  

( )14 ˆ6.2 10 N k.
B

F
−= − ×

10. (a) The force due to the electric field  ( F 
→

= q E 
→

)  is distinguished from that associated 

with the magnetic field ( F 
→

= q v 
→× B 

→
)  in that the latter vanishes at the speed is zero and 

the former is independent of speed.  The graph (Fig.28-34) shows that the force (y-

component) is negative at v = 0 (specifically, its value is –2.0 × 10
–19 

N there) which

(because q = –e) implies that the electric field points in the +y direction.  Its magnitude is   

E = (2.0 × 10
–19

)/(1.60 × 10
–19

) = 1.25 V/m.

(b) We are told that the x and z components of the force remain zero throughout the

motion, implying that the electron continues to move along the x axis, even though

magnetic forces generally cause the paths of charged particles to curve (Fig. 28-11).  The

exception to this is discussed in section 28-3, where the forces due to the electric and

magnetic fields cancel.  This implies (Eq. 28-7) B = E/v = 2.50 × 10
−2 

T.

For F 
→

  =  q v 
→× B 

→
 to be in the opposite direction of F 

→
  =  q E 

→
 we must have v 

→× B 
→

 in the 

opposite direction from E 
→

 which points in the +y direction, as discussed in part (a).   

Since the velocity is in the +x direction, then (using the right-hand rule) we conclude that 

the magnetic field must point in the +z direction ( i
^
 × k

^
= −j

^
 ). In unit-vector notation, we

have 2 ˆ(2.50 10  T)kB
−= × .
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24. We consider the point at which it enters the field-filled region, velocity vector

pointing downward. The field points out of the page so that v B×  points leftward, which

indeed seems to be the direction it is “pushed’’; therefore, q > 0 (it is a proton). 

(a) Eq. 28-17 becomes p2 / | |T m e Bπ= , or  

( ) ( )
( )

27
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−
−

−

π ×
× =

×

which yields B = 0 252. T .

(b) Doubling the kinetic energy implies multiplying the speed by 2 . Since the period T

does not depend on speed, then it remains the same (even though the radius increases by a

factor of 2 ). Thus, t = T/2 = 130 ns, again.

35. (a) The magnetic force on the wire must be upward and have a magnitude equal to the

gravitational force mg on the wire. Since the field and the current are perpendicular to

each other the magnitude of the magnetic force is given by FB = iLB, where L is the

length of the wire. Thus,

iLB mg i
mg
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= = = =
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(b) Applying the right-hand rule reveals that the current must be from left to right.



 

 

 

45. We use Eq. 28-37 where µ  is the magnetic dipole moment of the wire loop and B  is 

the magnetic field, as well as Newton’s second law. Since the plane of the loop is parallel 

to the incline the dipole moment is normal to the incline. The forces acting on the 

cylinder are the force of gravity mg, acting downward from the center of mass, the 

normal force of the incline FN, acting perpendicularly to the incline through the center of 

mass, and the force of friction f, acting up the incline at the point of contact. We take the 

x axis to be positive down the incline. Then the x component of Newton’s second law for 

the center of mass yields 

 
mg f masin .θ − =  

 

For purposes of calculating the torque, we take the axis of the cylinder to be the axis of 

rotation. The magnetic field produces a torque with magnitude µB sinθ, and the force of 

friction produces a torque with magnitude fr, where r is the radius of the cylinder. The 

first tends to produce an angular acceleration in the counterclockwise direction, and the 

second tends to produce an angular acceleration in the clockwise direction. Newton’s 

second law for rotation about the center of the cylinder, τ = Iα, gives 

 
fr B I− =µ θ αsin .  

 

Since we want the current that holds the cylinder in place, we set a = 0 and α = 0, and use 

one equation to eliminate f from the other. The result is mgr = µB. The loop is rectangular 

with two sides of length L and two of length 2r, so its area is A = 2rL and the dipole 

moment is µ = NiA = 2NirL. Thus, mgr = 2NirLB and 
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82. (a) For the magnetic field to have an effect on the moving electrons, we need a non-

negligible component of B  to be perpendicular to v  (the electron velocity). It is most 

efficient, therefore, to orient the magnetic field so it is perpendicular to the plane of the 

page. The magnetic force on an electron has magnitude FB = evB, and the acceleration of 

the electron has magnitude a = v
2
/r. Newton’s second law yields evB = mev

2
/r, so the 

radius of the circle is given by r = mev/eB in agreement with Eq. 28-16. The kinetic 

energy of the electron is K m ve= 1
2

2 , so v K me= 2 . Thus, 
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This must be less than d, so 
2

2 2

m K

e B
de ≤ , or B
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e d
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2 2

.  

 

(b) If the electrons are to travel as shown in Fig. 28-33, the magnetic field must be out of 

the page. Then the magnetic force is toward the center of the circular path, as it must be 

(in order to make the circular motion possible). 


