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12. Eq. 23-6 (Gauss’ law) gives εοΦ = qenclosed .   

 

(a) Thus, the value Φ = 2.0 × 10
5 

(in SI units)  for small r leads to qcentral = +1.77 × 10
−6 

C  

or roughly 1.8 µC.   

 

(b) The next value that Φ takes is – 4.0 × 10
5 

(in SI units), which implies 
6

enc 3.54 10 C.q
−= − ×  But we have already accounted for some of that charge in part (a), so 

the result for part (b) is qA = qenc – qcentral = – 5.3 × 10
−6 

C.  

 

(c) Finally, the large r value for Φ is 6.0 × 10
5 

(in SI units), which implies 
6

total enc 5.31 10 C.q
−= ×  Considering what we have already found, then the result is 

total enc central 8.9 .Aq q q Cµ− − = +  
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( ) ( ) ( ) ( ) ( )( )( )2 2

=0 1.40

ˆ ˆ ˆ ˆ3.00 j j 3.00 j A j 3.00 1.40 1.40 8.23 N m C.
y y

y A y
=

Φ = ⋅ − + ⋅ = = ⋅  

 

(b) The charge is given by 

 

( )( )12 2 2 2 11

enc 0 8.85 10 C / N m 8.23 N m C 7.29 10  Cq ε − −= Φ = × ⋅ ⋅ = × . 

 

(c) The electric field can be re-written as 0
ˆ3.00 jE y E= + , where 0

ˆ ˆ4.00i 6.00jE = − +  is a 

constant field which does not contribute to the net flux through the cube. Thus Φ  is still 

8.23 N⋅m2
/C. 

 

(d) The charge is again given by 

 

( )( )12 2 2 2 11

enc 0 8.85 10 C / N m 8.23 N m C 7.29 10  Cq ε − −= Φ = × ⋅ ⋅ = × . 

13. (a) Let A = (1.40 m) . Then 
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20. We imagine a cylindrical Gaussian surface A of radius r and unit length concentric 

with the metal tube. Then by symmetry enc

0

2 .
A

q
E dA rE

ε
⋅ = π =  

(a) For r < R, qenc = 0, so E = 0.  

 

(b) For r > R, qenc = λ, so 0( ) / 2 .E r rπ ε= λ With 82.00 10  C/mλ −= × and r = 2.00R = 

0.0600 m, we obtain  

 

( )
( )( )

8

3

12 2 2

2.0 10 C/m
5.99 10 N/C.

2 0.0600 m 8.85 10 C / N m
E

−

−

×
= = ×

π × ⋅
 

 

(c) The plot of E vs. r is shown below.  

 

 
 

Here, the maximum value is  

 

( )
( ) ( )

8

4

max 12 2 2
0

2.0 10 C/m
1.2 10 N/C.

2 2 0.030 m 8.85 10 C / N m
E

rε

−

−

×λ= = = ×
π π × ⋅
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24. We reason that point P (the point on the x axis where the net electric field is zero) 

cannot be between the lines of charge (since their charges have opposite sign).  We 

reason further that P is not to the left of “line 1” since its magnitude of charge (per unit 

length) exceeds that of “line 2”; thus, we look in the region to the right of “line 2” for P.  

Using Eq. 23-12, we have 

 

                                     Enet  =  E1  +  E2  = 
λ1

2πεo (x + L/2)
  + 

λ2

2πεo (x − L/2)
  . 

 

Setting this equal to zero and solving for x we find  

 

x =  
λ1  − λ 2

 λ1  +  λ 2
   

L

2
  

 

which, for the values given in the problem, yields x = 8.0 cm.  

  

 

 

uniform, and we neglect fringing effect. Symmetry can be used to show that the electric 

field is radial, both between the cylinder and the shell and outside the shell. It is zero, of 

course, inside the cylinder and inside the shell. 

 

(a) We take the Gaussian surface to be a cylinder of length L, coaxial with the given 

cylinders and of larger radius r than either of them. The flux through this surface is 

2 ,rLEΦ = π  where E is the magnitude of the field at the Gaussian surface. We may 

ignore any flux through the ends. Now, the charge enclosed by the Gaussian surface is 

qenc = Q1 + Q2 = –Q1= –3.40×10
−12 

C. Consequently, Gauss’ law yields 0 enc2 ,r LE qπ ε =  

or 

 
12

enc

12 2 2 3

0

3.40 10  C
0.214 N/C,

2 2 (8.85 10  C / N m )(11.0 m)(20.0 1.30 10 m)

q
E

Lrε π

−

− −

− ×= = = −
π × ⋅ × ×

 

 

or | | 0.214 N/C.E =  

 

(b) The negative sign in E indicates that the field points inward.  

 

(c) Next, for r = 5.00 R1, the charge enclosed by the Gaussian surface is qenc = Q1 = 

3.40×10
−12 

C. Consequently, Gauss’ law yields 0 enc2 ,r LE qπ ε =  or 

 
12

enc

12 2 2 3

0

3.40 10  C
0.855 N/C.

2 2 (8.85 10  C / N m )(11.0 m)(5.00 1.30 10 m)

q
E

Lrπε π

−

− −

×= = =
× ⋅ × ×

 

 

(d) The positive sign indicates that the field points outward.  

 

(e) we consider a cylindrical Gaussian surface whose radius places it within the shell 

itself. The electric field is zero at all points on the surface since any field within a 

conducting material would lead to current flow (and thus to a situation other than the 

electrostatic ones being considered here), so the total electric flux through the Gaussian 

surface is zero and the net charge within it is zero (by Gauss’ law). Since the central rod 

has charge Q1, the inner surface of the shell must have charge Qin = –Q1= –3.40×10
−12 

C.  

 

(f) Since the shell is known to have total charge Q2 = –2.00Q1, it must have charge Qout = 

Q2 – Qin = –Q1= –3.40×10
−12 

C on its outer surface. 

27. We assume the charge density of both the conducting cylinder and the shell are 
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uniform, and we neglect fringing effect. Symmetry can be used to show that the electric 

field is radial, both between the cylinder and the shell and outside the shell. It is zero, of 

course, inside the cylinder and inside the shell. 

 

(a) We take the Gaussian surface to be a cylinder of length L, coaxial with the given 

cylinders and of larger radius r than either of them. The flux through this surface is 

2 ,rLEΦ = π  where E is the magnitude of the field at the Gaussian surface. We may 

ignore any flux through the ends. Now, the charge enclosed by the Gaussian surface is 
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q
E
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or | | 0.214 N/C.E =  

 

(b) The negative sign in E indicates that the field points inward.  

 

(c) Next, for r = 5.00 R1, the charge enclosed by the Gaussian surface is qenc = Q1 = 

3.40×10
−12 

C. Consequently, Gauss’ law yields 0 enc2 ,r LE qπ ε =  or 

 
12

enc

12 2 2 3

0

3.40 10  C
0.855 N/C.

2 2 (8.85 10  C / N m )(11.0 m)(5.00 1.30 10 m)

q
E

Lrπε π

−

− −

×= = =
× ⋅ × ×

 

 

(d) The positive sign indicates that the field points outward.  

 

(e) we consider a cylindrical Gaussian surface whose radius places it within the shell 

itself. The electric field is zero at all points on the surface since any field within a 

conducting material would lead to current flow (and thus to a situation other than the 

electrostatic ones being considered here), so the total electric flux through the Gaussian 

surface is zero and the net charge within it is zero (by Gauss’ law). Since the central rod 

has charge Q1, the inner surface of the shell must have charge Qin = –Q1= –3.40×10
−12 

C.  

 

(f) Since the shell is known to have total charge Q2 = –2.00Q1, it must have charge Qout = 

Q2 – Qin = –Q1= –3.40×10
−12 

C on its outer surface. 

27. We assume the charge density of both the conducting cylinder and the shell are 

 

 

 

distance from the center of the shell, select A so the field does not depend on the distance. 

We use a Gaussian surface in the form of a sphere with radius rg, concentric with the 

spherical shell and within it (a < rg < b). Gauss’ law will be used to find the magnitude of 

the electric field a distance rg from the shell center. The charge that is both in the shell 

and within the Gaussian sphere is given by the integral q dVs = zρ  over the portion of the 

shell within the Gaussian surface. Since the charge distribution has spherical symmetry, 

we may take dV to be the volume of a spherical shell with radius r and infinitesimal 

thickness dr: dV r dr= 4 2π . Thus, 

 

( )2 2 2 24 4   4    2  .
g g gr r r

s g
a a a

A
q r dr r dr A r dr A r a

r
π ρ π π π= = = = −  

 

The total charge inside the Gaussian surface is q q q A r as g+ = + −2 2 2π  d i . The electric 

field is radial, so the flux through the Gaussian surface is Φ = 4 2πr Eg , where E is the 

magnitude of the field. Gauss’ law yields 4 20

2 2 2π πε Er q A r ag g= + − d i.  We solve for E: 

 

E
q

r
A

Aa

rg g

= + −
L
N
MM

O
Q
PP

1

4
2

2

0

2

2

2π
π π

ε
  .  

 

For the field to be uniform, the first and last terms in the brackets must cancel. They do if 

q – 2πAa
2
 = 0 or A = q/2πa

2
. With a = 2.00 × 10

−2 
m and q = 45.0 × 10

−15 
C, we have 

11 21.79 10 C/m .A
−= ×  

47. To find an expression for the electric field inside the shell in terms of A and the 
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distance from the center of the shell, select A so the field does not depend on the distance. 

We use a Gaussian surface in the form of a sphere with radius rg, concentric with the 

spherical shell and within it (a < rg < b). Gauss’ law will be used to find the magnitude of 

the electric field a distance rg from the shell center. The charge that is both in the shell 

and within the Gaussian sphere is given by the integral q dVs = zρ  over the portion of the 

shell within the Gaussian surface. Since the charge distribution has spherical symmetry, 

we may take dV to be the volume of a spherical shell with radius r and infinitesimal 

thickness dr: dV r dr= 4 2π . Thus, 

 

( )2 2 2 24 4   4    2  .
g g gr r r

s g
a a a

A
q r dr r dr A r dr A r a

r
π ρ π π π= = = = −  

 

The total charge inside the Gaussian surface is q q q A r as g+ = + −2 2 2π  d i . The electric 

field is radial, so the flux through the Gaussian surface is Φ = 4 2πr Eg , where E is the 

magnitude of the field. Gauss’ law yields 4 20

2 2 2π πε Er q A r ag g= + − d i.  We solve for E: 

 

E
q

r
A

Aa

rg g

= + −
L
N
MM

O
Q
PP

1

4
2

2

0

2

2

2π
π π

ε
  .  

 

For the field to be uniform, the first and last terms in the brackets must cancel. They do if 

q – 2πAa
2
 = 0 or A = q/2πa

2
. With a = 2.00 × 10

−2 
m and q = 45.0 × 10

−15 
C, we have 

11 21.79 10 C/m .A
−= ×  

47. To find an expression for the electric field inside the shell in terms of A and the 

 

 

 

problem, use a Gaussian surface in the form of a sphere that is concentric with the sphere 

of charge and passes through the point where the electric field is to be found. The field is 

uniform on the surface, so 24E dA r E⋅ = π , where r is the radius of the Gaussian surface. 

 

For r < a, the charge enclosed by the Gaussian surface is q1(r/a)
3
. Gauss’ law yields 

 
3

2 1 1

3

0 0

4  .
4

q q rr
r E E

a a
π

ε πε
= =  

 

(a) For r = 0, the above equation implies E = 0. 

 

(b) For r = a/2, we have  

 

 
9 2 2 15

21

3 2 2

0

( / 2) (8.99 10 N m /C )(5.00 10 C)
5.62 10  N/C.

4 2(2.00 10 m)

q a
E

aπε

−
−

−

× ⋅ ×= = = ×
×

 

 

(c) For r = a, we have  

 
9 2 2 15

1

2 2 2

0

(8.99 10 N m /C )(5.00 10 C)
0.112 N/C.

4 (2.00 10 m)

q
E

aπε

−

−

× ⋅ ×= = =
×

 

 

In the case where  a < r < b, the charge enclosed by the Gaussian surface is q1, so Gauss’ 

law leads to 

 

2 1 1

2

0 0

4 .
4

q q
r E E

r
π

ε πε
= =  

 

(d) For r = 1.50a, we have  

 
9 2 2 15

1

2 2 2

0

(8.99 10 N m /C )(5.00 10 C)
0.0499 N/C.

4 (1.50 2.00 10 m)

q
E

rπε

−

−

× ⋅ ×= = =
× ×

 

 

(e) In the region b < r < c, since the shell is conducting, the electric field is zero. Thus, for 

r = 2.30a, we have E = 0.  

 

(f) For r > c, the charge enclosed by the Gaussian surface is zero. Gauss’ law yields 

4 0 02πr E E= = .  Thus, E = 0 at r = 3.50a. 

 

49. At all points where there is an electric field, it is radially outward. For each part of the 
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(a) For r = 0, the above equation implies E = 0. 
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In the case where  a < r < b, the charge enclosed by the Gaussian surface is q1, so Gauss’ 

law leads to 
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(d) For r = 1.50a, we have  
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(e) In the region b < r < c, since the shell is conducting, the electric field is zero. Thus, for 

r = 2.30a, we have E = 0.  

 

(f) For r > c, the charge enclosed by the Gaussian surface is zero. Gauss’ law yields 

4 0 02πr E E= = .  Thus, E = 0 at r = 3.50a. 

 

49. At all points where there is an electric field, it is radially outward. For each part of the 
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50. The field is zero for 0 ≤ r ≤ a as a result of Eq. 23-16. Thus, 

 

(a) E = 0 at r = 0, 

 

(b) E = 0 at r = a/2.00, and  

 

(c) E = 0 at r = a.  

 

For a ≤ r ≤ b the enclosed charge qenc (for a ≤ r ≤ b) is related to the volume by 

 

q
r a

enc = −
F
HG

I
KJρ π π4

3

4

3

3 3

. 

 

Therefore, the electric field is 

 

E
q

r r

r a r a

r
= = −

F
HG

I
KJ = −1

4 4

4

3

4

3 30

2

0

2

3 3

0

3 3

2πε
ρ

πε
π π ρ

ε
enc  

 

for a ≤ r ≤ b.  

 

(d) For r =1.50a, we have  

 
3 3 9

2 12

0 0

(1.50 ) 2.375 (1.84 10 )(0.100) 2.375
7.32 N/C.

3 (1.50 ) 3 2.25 3(8.85 10 ) 2.25

a a a
E

a

ρ ρ
ε ε

−

−

− ×= = = =
×

 

 

(e) For r = b=2.00a, the electric field is  

 
3 3 9

2 12

0 0

(2.00 ) 7 (1.84 10 )(0.100) 7
12.1 N/C.

3 (2.00 ) 3 4 3(8.85 10 ) 4

a a a
E

a

ρ ρ
ε ε

−

−

− ×= = = =
×

 

 

(f) For r ≥ b we have 2

total / 4E q rε0= π  or 

 
3

2

0

.
3

b a
E

r

ρ
ε

3−=  

 

Thus, for r = 3.00b = 6.00a, the electric field is  

 
3 3 9

2 12

0 0

(2.00 ) 7 (1.84 10 )(0.100) 7
1.35 N/C.

3 (6.00 ) 3 36 3(8.85 10 ) 4

a a a
E

a

ρ ρ
ε ε

−

−

− ×= = = =
×
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50. The field is zero for 0 ≤ r ≤ a as a result of Eq. 23-16. Thus, 
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for a ≤ r ≤ b.  
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(e) For r = b=2.00a, the electric field is  
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(f) For r ≥ b we have 2
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Thus, for r = 3.00b = 6.00a, the electric field is  
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